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NOMENCLATURE

b channel width
c speed of sound
Cp specific heat under constant pressure
f,g,h Fourier coefficients of characteristic perturbations
h enthalpy
H stagnation enthalpy
I unit vector perpendicular to the wave propagation direction
M Mach number
n direction normal to velocity
p pressure
q velocity amplitude
r gas constant per unit mass
s cascade pitch
s entropy
S dimenlionless entropy (equation 1.3a)
u x-component of velocity
y tine
v y-component of velocity
Vvelocity vector
wi  i=l to 4, characteristic variables
x,y cartesian coordinates

ac angle of wave propagation direction
p2 = t-M 2

specific heat ratio
K wave propagation vector (unit vector)
Pa coefficient for strearnwise exponential variation of wave disturbances
( phase angle of Fourier mode (equation 3.4)

p density

(0 vorticity

0 flow angle
transformed time variable (equation 1.22)

Subscripts

0 boundary values ,
CO, free stream values

Superscripts

perturbations of corresponding quantity

V



FAR FIELD NUMERICAL BOUNDARY CONDITIONS FOR INTERNAL
AND CASCADE FLOW COMPUTATIONS

Ch. HIRSCH,
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Vrije Universiteit Brussel, Belgium

ABSTRACT

The present report extends the approach developed by A. Verhoff for the treatment of the
far field boundary conditions, Verhoff and O'Neil (1984), to more general formulations of the
Euler equations and to cascade geometries.

Linearized solutions of the Euler equations are developed for the perturbations from the
uniform free stream, for ducts and cascades. These solutions are based on the conditions that
the waves associated with incoming characteristics should decay to zero in the far field, while the
variables associated to the outgoing characteristics are derived from the numerical internal
solution. The exact linearized solutions are based on a Fourier expansion in the direction along
the inlet or exit boundaries.

Results, obtained from an Euler code are shown for ducts and cascades, comparing
calcualtions for exit boundaries at increasingly closer distance to the central flow region. The
method Is also valid for nonisentropic flows.

The results show that the corrections to the uniform boundary conditions derived from the
analysis allow a considerable reduction of the computational domain, with the corresponding
savings in computational times.



FAR FIELD NUMERICAL BOUNDARY CONDITIONS FOR INTERNAL
AND CASCADE FLOW COMPUTATIONS

Ch. HIRSCH,
Department of Fluid Mechanics,

Vrije Universiteit Brussel, Belgium

INTRODUCTION

The present report extends the approach developed by A. Verhoff for the treatment of
the far field boundary conditions, Verhoff and O'Neil, (1984), Verhoff (1988), to more
general formulations of the Euler equations and to cascade geometries.

The imposition of uniform boundary conditions in the subsonic far field of the
computational domain, such as constant pressure condition, requires the computational
boundary to be located at a large distance from the central flow region. Although the flow
variations in the vicinity of the external boundaries are generally smooth, a large number
of mesh point are necessary to cover adequately these extended regions.

If more information would be available on the behavior of the flow in the far field,
allowing for non-uniform flow distributions along boundaries, it would be possible to
accept external boundaries at distances much closer to the main flow region, with the
subsequent reduction in number of mesh points.

In this report !inearized solutions of the Euler equations are developed for the
perturbations from the uniform free stream, for ducts and cascades. These solutions are
based on the conditions that the waves associated with incoming characteristics should
decay to zero in the far field, while the variables associated to the outgoing characteristics
are derived from the numerical internal solution. The exact linearized solutions are based
on a Fourier expansion in the direction along the inlet or exit boundaries.

Typical outcome of the analysis leads, for a cascade exit station with subsonic axial
velocities, to the replacement of the constant pressure condition by an improved boundary
condition, relating the pressure perturbations to the Fourier expansion of the flow angle
along the exit boundary calculated from the numerical internal solution.

Results are also presented for ducts and cascades, comparing the results for exit
boundaries at increasingly closer distance to the cascade blades.

In the first part, sections 1 and 2, we present a reformulation of A. Verhoff s (1985)
isentropic analysis for ducts, based on the perturbation analysis of the general form of the
characteristic equations, as applied by I lirsch et al.(1987). The first order equations are
identical to those derived by Verhoff for his generalized Riemann invariants, although the
acoustic wave perturbations are represented by a different combination of variables. This
covers therefore isentropic as well as non-isentropic flows. As a by-product, an
interesting relation is derived, relating the far field pressure and velocity fluctuations for
isentropic flows.

The third section presents the extension of the approach to cascades. Due to the
periodicity boundary conditions in the inlet and outlet domains, resp. upstream an'!
downstream of the cascade blades, a complex Fourier representation has to be defined for
the variations in the direction of the cascade front. Results, obtained from an Euler code
are shown for ducts and cascades, confirming the correctness of the analysis and the
potential CPU benefits of closer boundaries.

I.PERTURBATION ANALYSIS FOR GENERAIZE)
CHARACTERISTIC EQUATIONS.

The small perturbation formulation of the Euler equations can be derived in many
ways, depending on the particular variables considered for the analysis. The most current
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formulation puts forward the pressure, since it is the basis for all acoustic applications,
and takes the Euler equations in primitive variables, pp and velocity, as starting point.

In computational fluid dynamics, appropriate information on outgoing pressure
radiation waves allows to investigate far field boundary conditions, which should prevent
spurious waves to be reflected from the boundaries towards the computational domain.
This has been investigated by Bayliss and Turkel (1982), where references can also be
found to earlier important work in that direction and more recently by P.Roe (1986). In
these methods, differential equations for the pressure are derived for the far field pressure
and added, after appropriate discretization, to the other internal equations.

Other approaches make use of the far field formulation of the small perturbation
potential equation and introduce analytical asymptotic expansions as boundary
corrections, Thomas and Salas (1986).

In the present approach, numerical information is used directly in interaction with a
series expansion of the far field, applying a perturbation expansion of the characteristic
equations. Hence, we take as starting point, the compatibility equations. Note that these
different point of views are clearly interconnected: Roe (1986) derives a particular form of
the acoustic compatibility equation corresponding to a selected wave propagation direction
which corresponds to the selected pressure equation. In the present work, far-field
pressure relations will be derived from the characteristic analysis.

1.1. Euler egualions in characteristic form

We consider the general form of the Euler equations in characteristic form,
written for an arbitrary direction of wave propagation , considered as a unit vector,
following Hirsch et al. (1987), see also Hirsch (1988), (1989).

The dependent variables are the following characteristic quantities, defined in
differential farm,

awl = ap - -tap (L Ila)

C 2

aw2=ia = KOU - K)V (l.lb)

aw3 = i.aV+ 1 ap= Ku+ v+ 1 6 ap (.1c)

D4=- iN+ 1-a=- (KjdU + KOV) + -tp( I d)
PC P

where the vector i is normal to the wave number vector K and has the components (Ky, -

Kx) . Note that I is also a ttnit vector; see figure 1.1.
The first characteristic variable is proportional to the entropy and tile associated

equation will dcscrtbc the convection (propagation) of entropy (waves). The second
component is the amplitude of a vorticity or shear wave, which has no equivalent in one
dimensional flows. The third and fourth components are the amplitudes of the acoustic
waves.

The compatibility equations for the Euler system of conservation laws, become

tWI + ( . w I = 0 I.a



(tW2 (V.V)w2+ S (I.V)(W 3+W4 ) = 0 (l.2b)

atw3+ (V+ck).Vw 3 + C (i. )w 2 = 0 (1.2c)

vtw4 + (V-cR).w 4 + C (l.V)w 2 = 0 (1.2d)

The first two terms of all the equations (1.2) are purely convective and represent the
propagation of the associated wave in the characteristic directions. The third terms
represent the coupling or the interaction between the different waves and their presence
results from the fact that the jacobian matrices ate not simultaneously diagonalizable for

wave-like solutions of the formU=U 0 eiX ei tlI whereby all the components of U, that

is all the flow variables, propagate along the same spatial direction K.
If this direction is taken aligned with the velocity, than the above equations can be

transformed to the particular streamwise characteristic form used by Verhoff, Verhoff and
O'Neil(1984). Defining the dimensionless entropy as

S = -s/(y r) (1.3a)

where s is the physical entropy and r the gas constant, we have

s-s--1 log/Y I / (l.3b)"Y(Y- 1) (P'Po]

with
dS= dw1  (1.3c)p(y-1)

The constant S,,, is taken as So,, = 2/(y-1).

Hence, the first characteristic equation reduces to the convection of entropy,
as as

q -+ 0 (1.4 )

where ds is the elementary arc length along the flow pathline and q the magnitude of the
velocity.

The second characteristic variable

aw 2  Lx .(1.5)

reduces to the following form for a direction K = I, the unit vector in the direction of the

velocity and i = n the unit vector in the direction normal to the velocity, figure 1.2.
With

6 = dqi, +qdOl , (1.6)
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aw2= lTV- av (1.7)

the second equation (1.2b) becomes
a0 c2 aP

-- + (V .)8 + - 0 (1.8)

where P is the logarithm of the pressure and a/dn is the derivative in the direction nomial
to the velocity.

The third characteristic variable is written in the following form

= + lv-v =-- +aq (1.9)

pc PC

and equation (1.2c) becomes

aw w3  ao
-- 3 + (q+c)a- s - +qC n =0 (10)

Introducing equation (1.9) and expressing the pressure variations dp in function of the
variations of entropy and speed of sound, via the definition c2=y/p for a perfect gas and
equation (1.3), leads to

d- =cdS +---dc = d(cS) - (S- .21 )dc (1.11)PC Y-1 Y-1

The formulation of the Euler equations used by Verhoff is based on 'generalized'
Riemann variables R and Q, defined as R=q-cS and Q=q+cS and equation (1.i0) can be
transformed to

a(q+cS) + (q + c ) S( + f s ) _ (S- --2 ac + (q+c)a] - qaO

Note also the interesting telation for the speed of sound

ac 0c 2y-1 c
t- +q s =-+ ) (.13)

and with the expression of the divergence of the velocity in local coordinates,

aq aov.7= +q~n (1.14)

ds +q5n

equation (1. 12) reduces to the forn

d(q+cS) + (q+c),-(-cs S 2 (dc Y--I Dq Y-i D)O
+tqc) Ds - -)c ys- 0 -- qCSn (1.15)

as as 2 ' 2 5



used by Verhoff and O'Neil(1984).
The fourth characteristic equation leads to the similar equation for the variable R=q-cS

a _(q-cS) _____ 2 (c T-I q Y-I ae
q + +(q-c)q-(S) (S - )c (s+ - ) +-qcS (1.16)
at y--c IS Vy.. s 25-s 2 V3n

Equations (1.4), (1.8), (1.15) and (1.16) are identical to the 'Quasi ID' formulation of
Verhoff and
O'Neil (1984).

1.2. Perturbation exnansion in the far field

If the flow at infinity is uniform, at any finite distance a perturbation will exist, which
is supposed to be small at some distance from the central region of the flow domain.
Denoting by a subscript . the uniform quantities and writing all variables U as

U=Uo,+eU', where E is a small perturbation parameter, the first order linearized Euler
equations (1.2) take the form

atWl + (V*V)w1 = 0 (l.17a)

atw2 + (V--V)w2 + _ (i.V)p' = 0 (1.17b)P=

(w3 + C-).Vw 3 + = 0 (1.17c)

tw4 + (V-- C).Vw4 + C(I.V)w2 = 0 (L.17d)

The perturbation equations are written here in the general form for an arbitrary wave
propagation direction and the first order corrections w' of the characteristic variables are
defined as follows, in function of the perturbations S', p' and V' of resp. entropy,
pressure and ve!ocity. The first characteristic variable w') is proportional to the entropy,
hence we have, following equation (l.3b),

wt= p(y- 1)S' (1.18)

while the second characteristic variable w' 2 , in accordance with equation (1.5), is defined
as

w2= .' = v'coso - u'sin(x (1 . 19a)

referring to figure 1.3, (x being the angle betwen the propagation direction Z and the
reference x-direction and u', V the cartesian components of the perturbation velocity. In
function of the flow angle deviation 0' to the free stream angle 0,,,, and the projection q'

6



of the velocity perturbation on the direction of the far field velocity, the above equation

can also be written as

w2 = q_ 0' cos(o - q' sin((x -8,) (I.19b)

The perturbations of the third and fourth characteristic variables are defined by

w + q, E' sin(ot -0_) + q' -os(a-0.) (1.20)

q4=3 P8 q' c

pc p q _ sin(0c -0_) - cos((1.21)

Transforming the time variable to a variable with space dimensions, via
T = c,,,t (1.22)

and introducing tile free stream Mach number

M. = qJc. (1.23)

leads to the following form of the first order perturbation equations, where x and y are
reference cartesian coordinates.

5S+ " + sinO,,,-yS'= 0 (1.24a)

+ sinO -)W 2- 2 (sina a -cost 0 (I.24b)
~ ,,cosO<+ .---~ )w+ 4

__W 3W aW2 +Co M2o(14c+ (M, cos0,+ Cosa)- + (M,,sinO- + sina) sinci --- + cosa -- = 0 (1.24c)
ax ay x ay

aw, IM, aw' . 2 t
;- +(MoocosOo -cosa) x-+(M0 sinO0-sina) -y--sinix -+coso- ay-=O (1.24d)

Note that the average of the acoustic wave perturbations is proportional to the pressure
disturbance p'

(wI + w4 )/2 = (1.25)
3 4 P C_0

and that the second equation (1 .24b) relates the flow angle perturbations 0' to the far field
pressure disturbance.

1.2.1. Simplified formulation

7



A simplified form is obtained when the wave propagation direction i is aligned with
the free stream velocity direction, that is for oa=Oo,. In addition, the x-direction can also

be aligned with the free stream velocity, that is a=O,--O and the above equations simplify
considerably.

The characteristic variables reduce to

w1 = P(Y-1)S' (1.26a)

1

w2 = q O' (1.26b)

w3 = - p ,+ u' (1.26c)

P u (1.26d)

and the system (1.24) becomes

as' aS'
S+ M.- - = 0 (1.27a)

aw2 + 32 1 (w+w4) 0.
M - 2 +xy - (1.27b)

- +(M+I) -+ 0 (1.27c)

aw4aw4+ aw2_
+-(Mw- -l)-V--- + - 0 (1.27d)

This formulation of the first order perturbation equations is identical to the isentropic
formulation applied by Verhoff (1985).

1.2.2. Relation between pressure and velocity dis(urbances

An interesting relation connecting pressure, velocity and entropy disturbances can be
obtained, to first order, from energy conservation or conslancy of stagnation enthalpy.

Writing h+q2/2 = Iloo and expanding to first order leads to the following relation
between enthalpy and velocity perturbations

h' + q'qoo = 0 (1.28)

l i n nu



where q' is the perturbation of the magnitude of the far field velocity. This quantity is not
equal to the magnitude of the velocity disturbance v and we have q' u'.

Expanding the definition of enthalpy in function of entropy and pressure

y/-1 S

leads to

h' Y- ' s' (1.30)

Combining with equation (1.28), we obtain with the perfect gas relation h_= c2 Ay-l)
and the dimensionless entropy disturbance S',

P- + q'M,- (1.31)

The interest of this relation is that it expresses the far field influences of entropy
fluctuations on the relations between the velocity and pressure fluctuations.

The acoustic wave amplitudes dw 3 and dw4 can also be expressed in function of
entropy, speed of sound and velocity, after elimination of the pressure through the
entropy relation (1. 11), leading to

dw 3 = cdS + -dc + dq (1.32)
Y-1

if the wave propagation direction i is aligned with the local velocity. Similarly,

dw 4 = cdS + 2-tc - dq (1.33)
Y- 1

The perturbations of these quantities can readily be defined and also can be combined
with equation (1.31), to give

w3= P + q' = cS' +2- + q-
3 P-c-Y-1

(1.34)

=c S' + (1-M.q'
and

P 2c

w 4  P = , 2c' ,-qpc, -I
(1.35)

cS' - (1+M jq'

9



These equations imply the following relation between velocity and speed of sound
perturbations,

- 2c' (1.36)
y-1

which is obtained from equation (1.28) by an expansion of the perfect gas relation

h=c 2/(y-1) (1.37)

writing
C = c,, + C' (1.38)

2. FAR FIELD BOUNDARY CONDITIONS FOR INTERNAL DUCT
FLOWS

The determination of far field boundary conditions, based on the expansion of the
characteristics small perturbations, is described in this section for duct flows, with
subsonic in- and outflow conditions.

The derivation follows the approach of Verhoff (1985) and is repeated here with the
w' variables, leading to some interesting relations for the pressure and velocity
corrections.

The method determines analytical, steady state solutions for the perturbation wave
amplitudes with exponential decay in the streamwise direction (taken as the x-direction)
and a Fourier expansion in the direction of the boundary surfaces (taken as the y-
direction). The unknown coefficients of the solutions are determined, on one hand, by
expressing that the incoming characteristic disturbances at the boundaries decay
exponentially in the far field and on the other hand, by matching the analytical solution at
the boundary of the computational domain with the numerical solution for the outgoing
characteristics.

The analysis is performed for stationary flows, for the simplified formulation (1.27)
and a duct geometry represented in figure 2.1.

The duct extends to infinity with a computational region limited by inlet and exit
boundaries AB and CD, the width of the channel being denoted by b. We look for
perturbation solutions of the system (1.27) in the region between the inlet (or
exit) station of the computational domain and the boundary at infinity.

Since entropy is purely convected and decoupled from the other equations, we can
solve separately for the entropy perturbation and remove the corresponding equation from
the system (1.27).

Disturbance solutions by separation of variables are sought for the remaining variables
in the external region, with a Fourier series in y, of the form

rm_-
w2= h h4x)sin Y (2. 1a)

10



miry
W3  f(x) COs Y (2. 1 b)

rn-I

w4 = ,gm(X) COSMY (2.1c)

The choice of the Fourier terms in equation (2.1a) results from the flow tangency
boundary condition at the solid walls, requiring that 0'=0 for y = ±b/2. Introducing these
solutions in the stationary form of equations (1.27) leads to the following system, for an
arbitrary Fourier mode m, writing M instead of M-, and removing the subscript m on the
amplitudes f, g and h.

f mit
(M+1)- + b6- h 0

)g m_ (.2
(M-1)- -+- h =0 (2.2)

M ah m7E
x 2b (f+g) = 0

Defining the vector U as

U = 9(2.3)
h

the system (2.2) can be written in matrix form

Ux + A U = 0 (2.4a)

where the subscript x denotes partial derivative with respect to x and where the matrix A
is

0 0
mit

b(M-i) (2.4b)

-mit -mit
0

Solutions of the form

U = U 0e-Px (2.5)

II



exist for g equal to the eigenvalues of A, obtained from the solutions of det (A - ll) = 0,

leading to

p1 =0

P. M(2.6)

with p32 = 1 - M 2.
The corresponding amplitudes are the eigenvectors of A, denoted by u(i), and are

given by

13-1
1 +1- M+1

U (1 )  -1 U(2) -P U(3) -L (2.7)
1-M 1-M

0 1 1

Hence, the general solution is written as a linear combination of the above eigenvectors,

3
U= CiU(i)e-pix (2.8)

i=1

or explicitly,

1 M+1

g C1 -1 +C2 - e-b x +C3 e_ x  (2.9)

h 0 1 1

The C-coefficients are determined by matching these solutions with the numerical
solution at the boundary of the computational domain. Denoting by f0 , go, h0 the
numerical values of the perturbation wave amplitudes at the boundary, taken as the line
x=O, the C- coefficients satisfy the following system:

CI+v- C2 -Pl rC 3=fo

-C 1 - 4- C 2 + lC3=g0  (2.10)

C2+ C3 = h0

The solutions are given as
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C, =J11 [(I +M)fo+ (l-M)g o

C2= 1ho- (fo+g 1  (2.11)

C 3 = 1 Ih0+ (f0+ g0)-

In order to determine the boundary conditions valid at the finite distance location of the
boundaries of the computational domain, corresponding to uniform flow conditions at
infinity, we have to look at the incoming and outgoing characteristics.

From the properties of the characteristic variables it is known, see for instance Hirsch
(1989) for a general presentation, that w'2 and w' 3 are characteristics propagating from
left to right (for positive u), while w'4 is propagating from right to left for a subsonic
flow, since they correspond resp. to wave speeds u, u+c and u-c.

Hence, in order to determine the far field disturbances we have to express that the
amplitudes of the incoming characteristic perturbations are zero at infinity, leading to a
correction on the physical boundary conditions for finite distances, and that the
amplitudes of the outgoing characteristics are defined by the numerical solution at the
boundary. These equations are now examined separately for an inlet and an exit
boundary.

2.1. Inlet boundary conditions

At an inlet section, w'2 and w'3 are incoming characteristics, while w'4 is propagating
from inside the computational domain towards the boundary, for a subsonic inflow, see
figure 2.2.

Referring to the solutions (2.1) this implies that the amplitudes h and f must decay to
zero for x-+-. and consequently, from equation (2.9), that the coefficients C1 and C2
have to vanish since they are associated resp. with a constant or an exponentially growing
amplitude. Introduced in the relations (2.11 ), these conditions determine the perturbations
fo and h0 in function of go, which in turn is obtained from the internal numerical solution.

The following relations are therefore valid at the inlet boundary, instead of fo = ho = 0,

-I-MI

f0= - ITM go
I -M ]3(2.12)1-M 0

ho= go1  - goP3 I+M

and the amplitude C3 of the remaining wave is

C 3 = h0 = (.M go (2.13)

The first order perturbation solution in the region upstream of the inlet boundary is
then completely defined for ca,:h hvrmonic as (x _ 0)

13



gol X+ m
g - bX (2.14)

h1

The corrected boundary treatment is therefore established as follows. assuming that the

incoming flow is isentropic:

i) Develop the numerically computed distribution of the characteristic perturbation

, p' P'P00
w q' = (q q j (2.15)

'
4

= P C POOCQ

in a Fourier series in y along the inlet section. With the definitions (1.26) and the first
relation (2.12), we have

-1 ' -1
q'=u -1 w4I= - o .9(2.16)

1+M. 0  I+M 0

and hence it is easier to develop the perturbations of the x-component of the velocity in
the inlet section, in a cosine-Fourier series

U, = AmCOS -  (2.17)
m b

In practice, 4 to 5 hamlonics are sufficient for the required accuracy.

ii) At a duct inlet section, it i7, customary to fix stagnation pressure and temperature, as
well as the inlet flow angle. The present treatment provides a correction to the uniform
inlet angle due to the finite distance of the boundary and is defined by applying the
Am-coefficients to the following development, applying equation (2.13),

w2 = v = q 0 3 YAmsin Y (2.18)

m

Note the sine-expansion in this formula.

iii) The pressure disturbances at inlet are directly obtained from u' by application of
equation (1.31) for isentropic conditions, that is

p'= - u' p,,U (2.19)

without the necessity of performing a Fourier expansion.

14



In summary, the numerically computed x-component of the velocity
perturbations with respect to the far field velocity U. is expanded in a
cosine-Fourier series along the inlet section. The resulting Fourier
coefficients are applied, after multiplication by (-P), as coefficients
of a sine-Fourier expansion in order to obtain the flow angle disturbances
along the inlet section.

The corrected flow angles are then applied as new boundary conditions.

2.2. Exit boundary conditions

At an exit section, w'2 and w'3 are outgoing characteristics, while w'4 is an incoming
characteristic for subsonic exit velocities, figure 2.3. Consequently, only one physical
boundary condition can be imposed at a subsonic exit, generally the static pressure.

Referring to the solutions (2. 1) this implies that the amplitude g must decay to zero for
x-- and consequently, from equation (2.9), that the coefficient C3 has to vanish since it
is associated with an exponentially growing amplitude. Introduced in the relations (2.11),
this condition determines the perturbation go in function of f0 and ho, which in turn are
obtained from the internal numerical solution.

The following relations are therefore valid at the exit boundary, instead of go = 0,

go= -_ 2M h0 - f0  (2.20)

and the amplitudes of the remaining waves are

CI = f0- 1- M ho= f0- - P - ho
+ IM

(2.21)
C2=h 0

The first order perturbation solution in tile region downstream of the exit boundary is then
completely defined for each harmonic as (x 0)

-1P

13g to-1M o -ho e (2.22)

Note that the coefficient C1 is the amplitude of a constant wave in x and represents a non-
decaying contribution, in other words a purely transported quantity. It is shown in the
following that the vorticity disturbances are proportional to CI.

The corrected boundary treatment is therefore established as follows,

i) Develop the numerical distribution of the characteristic perturbations

15



W= V = qO'
(2.23).p' P -P,,w,= - + _i + (q - q,

w - P+q C

in a Fourier series in y along the exit section. With the definitions (1.26) and the
relations (2.21), the coefficients [p- c.o (g+f)/2] are equal to the Fourier coefficients B
of the expansion of the pressure disturbances in a cosine series and are connected to
the V-expansion by application of equation (2.20). With

m= BrCOS M (2.24a)
mb

V = qe' mAmsin-y (2.24b)
m b

we have,

Bm-pq Am (2.25)

Hence, in order to obtain the pressure corrections due to the finite distance of the exit
boundary, it is sufficient to develop only the V-perturbations in a sine-Fourier series

ii) The corrections to the uniform pressure boundary condition are defined by applying
the Am-coefficients to the following development, leading to the new boundary
condition

S= p q Amcos (2.26)
= 13 M

Note the cosine-expansion in this fornula.
In summary, the numerically computed y-component of the velocity

perturbations is expanded in a sine-Fourier series along the exit section.
The resulting Fourier coefficients are applied, after multiplication by the
appropriate coefficients, to a cosine-Fourier expansion in order to obtain
the new pressure boundary condition.

The solution (2.22) shows that a conslant amplitude wave, first term in (2.22), is
maintained at downstream infinity. This wave is connected to the Ct coefficient and is due
to the vorticity waves which generate the eigenvalue pt1=0 in equation (2.6). This can also
be shown from a direct computation of the vorticity perturbation

au' av')' = y (2.27)
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which can be expressed in function of the characteristic variables and the expansions
(2.1), for an arbitrary Fourier mode m, by

2 f + Dh ) sin b (2.28)

When applying the above relations (2.22), valid at the exit station, we obtain after some
algebraic manipulations,

(A = b C 1 sin b (2.29)

This vorticity is generated in the computational domain and is either due to a physical
source, such as a non-uniform shock intensity, or to numerical dissipation acting as
numerical vorticity sources if the flow is isentiopic.

In both cases, the generated vorticity is transported out of the domain, without
decaying with downstream distance.

The value of thz C1 coefficient, calculated from the above boundary procedure, is a
measure of the numerical accuracy for isentropic flows, since it will be a measure of the
numerically generated vorticity.

2.3. A.inlicjaoQnI: Subsonic channel flow

The treatment of the far field boundary conditions, described above, is applied to a
channel flow with subsonic inlet and outlet conditions. The channel is formed by a lower
wall with a sinusoidal shape, in order to have a smooth variation of slope, and a
rectilinear upper wall.

Calculations are performed in the reference domain, shown in figure 2.4, with 61
points in the streamwise direction and compared to results for a restricted domain of 31
streamwise points, where the boundaries have been taken much closer to the central part
of the channel.

The improved boundary treatment is applied to an Euler code developed at the VIJB.
This code, see Lacor and llirsch (1988a), (1989b) for a more detailed description, solves
the time dependent Euler equations in conservation form on a structured mesh, applying a
finite volume, cell-centered discretization. The fluxes are calculated with an upwind
method based on flux splitting, extended to second order by variable extrapolation
(MUSCL approach) and the TVI) property is maintained via the introduction of limiters.
The time integration is implicit and the corresponding implicit operators are solved by
relaxation methods, coupled to a multigrid technique.

Figure 2.5 shows the isoMach number distribution in the central part of the channel,
comparing the results obtained for the extended and restricted domains, the latter with the
corrected boundary treatment. Figure 2.5a is obtained with the standard boundary
conditions, imposing uniform pressure at exit and zero flow angle at inlet, but only tihe
central part is shown. When the corrected conditions are introdtuced, figure 2.5b, the
computations on the restricted domain become very close to the solution on the extended
domain.

Figure 2.6 shows the Mach number distribution on the lowcr waii, comparing the
results obtained for the extended and restricted domains without and with the corrected
boundary treatment. Figure 2.6a is obtained with the standard boundary conditions,imposing uniform pressure at exit and zero flow angle at inlet. TIhe errors introduced by
these conditions when the limits of the computational domain are too close is clearly seen.
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When the corrected conditions are introduced, figure 2.6b, the computations on the

restricted domain become very close to the reference solution on the extended domain.

2.3.2. Transonic channel flow

The boundary corrections defined in section 2.2 do not require the flow to be ientropic
at outlet, and therefore the method should apply also to non-isentropic conditions, as
occurs when a shock appears in the channel. If the inlet Mach number is increased
compared to the previous case, a curved shock appears, as seen on figure 2.7, resulting in
a non uniform entropy downstream of the shock. Figure 2.7 shows the isoMach number
distributions in the central part of the long channel, comparing the results obtained for the
extended and restricted domains, the latter with uncorrected (b) and corrected (c)
boundary treatment.

The Mach number distributions on the lower and upper walls are shown on figure 2.8,
for the three cases of figure 2.7. There is a shift in the shock position by one mesh cell,
which is not very significant even on this relatively coarse mesh. The improvement due to
the boundary corrections is clearly seen. Another measure of the corrections concerns the
inlet angles; the corrected inlet angle for the short channel is 2.6 degrees, to be compared
with the value of 2.7 deg. calculated along the same section of the long channel, while in
the uncorrected case the inlet angle is fixed at zero degrees. Another display of the effects
of the boundary treatment is shown on figure 2.9 where the Mach number profiles are
compared at inlet and outlet of the short channel. The differences between the dashed lines
and the plus-symbols indicate the amplitude of the corrections on the short channel, while
the solid line is the reference value from the long channel. The small difference between
the latter and the corrected values of the short channel computation (+ symbols) is
probably due to the fact that the boundaries of the long channel have not been taken far
enough.

3. FAR FIELD BOUNDARY CONDITIONS FOR CASCADE FLOWS

The method described in section 2 is extended to cascade flows with a geometrical
configuration shown in figure 3.1. Cascade flows are characterized by the fact that the
passage between two blades is repeated indefinitely in the direction of the cascade front,
that is the y-direction, with a periodicity equal to the pitch s (the y-direction corresponds
to the tangential, wheel speed, direction in the turbomachine). Due to this periodicity, the
computational domain is limited by the blade surfaces and two periodic extensions. At
inlet the boundaries AE and BF are periodic, that is all physical flow properties at
corresponding points P and P' are identical. Similar properties exist at exit along the
segments GC and 1ll). The inlet and exit sections AB and CD have to be parallel to the
cascade front in order to satisfy the periodicity conditions.

The standard physical boundary conditions which are valid strictly at infinity, are
uniform values of flow angle, stagnation pressure and temperature at inlet and static
pressure at exit.

The objective of the present approach is to define corrections on these conditions due
to the finite distance of the limits of the computational domain. Since stationary flows are
being considered, stagnation temperature remains constant and hence only the flow angle
has to be corrected at inlet and the static pressure at outlet.

The basic equations are given by the linearized systcm (1.24), written for an arbitrary
wave propagation direction K and we look for stationary, perturbation solutions of the
system (1.24) in the region between the inlet (or exit) station of the
computational domain and the boundary at infinity.
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Since entropy is purely convected and decoupled from the other equations, we can
solve separately for the entropy perturbation and remove the corresponding equation from
the system (1.24).

Disturbance solutions by separation of variables are sought for the remaining variables
in the external region, with a complex Fourier series in y, such as to satisfy periodicity
with a period equal to s.

- 00 .2mity
w 2 = I Hr(x) e' s (3.1a)

m=l

.2mty
w 3  Fn(x) e' s (3.1b)

m=l

.2mITy
w4 = Gm(x) eI s (3.1c)

rn-1

Compared to the duct case, the amplitudes H, F and G are complex quantities, written as

H = h1 -i h 2

F = f 1- i f2  (3.2)

G=g 1 -ig 2

where the subscript in has been removed for clarity of the notations.
The complex form of the solutions (3. 1) is a compact way of expressing periodicity,

but obviously only the real part has physical significance. The real part of the solution is
given, for an arbitrary Fourier mode m, by

I

w 2 = h 1 cosoy + h2 sinoy

w3 = f1 cosOy + f2 sinoy (3.3)

w 4 =g c1 COsy +g 2 sinoy

where the phase angle 0 is defined by

2tmy (3.4)

Introducing these solutions in (tle stationary form of equations (1.2-1) we obtain the
following system, for all Fourier modes, as a consequence of the linearity of the
perturbation equations, introducing the axial (x) and tangential (y) Mach nunihers,

19



Ma= MCOSO(.

M u = M- sinO-

and defining a = sinox and b = cosot.

Ma- - - 2 x(F+G) + i M u !f{+ i (F+G) =

aF aH
(Ma+ b) -a--+ibll+iI(M u +a)F=O (3.6)

OG aH
(Ma-b) *a - a -- i bH + I (Mu- a)F = 0

Defining the vector U as

H
U = (3.7)

F-G

the system (3.6) can be written in matrix form, after some rearrangement,

A Ux + B U =0 (3.8)

where the subscript x denotes partial derivative with respect to x and the matrix A is

q a 14Mu 2Ma -2 0 r 0

A= 0 b Ma B = i 0 a M u  (3.9)

-2a Ma b 2b M u  a

It is of interest to note at this point that the (1-7() terms are the Fourier coefficients of
2p'/(p-,c -) and that the difference (F-G) represents the expansion of the velocity
perturbation along the propagation direction , that is '. k. Note also the appearance of
the axial and tangential Mach numbers, which are typical for cascade flows.

Solutions of the form

U = U 0oex (3.10)

are sought, where pm is equal to the eigenvalucs of (B-At), leading to

l'l = i OrT with t -tanOoo (3.11)

while the two other solutions are obtained from the roots of the quadratic equation, setting
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2 2 2

X (1- Ma) +2iXMaMu- (I -Mu)=0 (3.12)

The solutions are

9 TMaMu±P (3.13)
2

1 -Ma

with p2= I- M 2, where M is the Mach number of the far field. The appearance of this term
indicates that the considered solutions become oscillatory in x at supersonic Mach
numbers, since 03 becomes purely imaginary in this case.

It is of importance to observe that these eigenvalues are completely
independent of the direction cc of the propagation vector i. They depend
only on the flow parameters in the far field, namely Mach number and flow angle at
infinity. This is to be expected since the linearized solutions of the Euler perturbation
equations should have a space dependency based on physical quantities. Only the
amplitudes of these waves will be function of the selected propagation direction.

The denominator in equation (3.13) is positive for subsonic axial velocities, which is
always the case in practice.

The amplitudes of the solution (3.10) are tile eigenvectors of the matrix (B-All),
associated to the three eigenvalues (3.11), (3.13). They are easily obtained as

1 l-T I i+ X

2 l+ t 2 ij-X

U ( 1)  0 U (23)= Ma X-it
i-X (3.14)

where X is either of tile the eigenvalues defined by (3.13) and = tancX.

Note that these eigenvectors are independent of the phase angle 0, but depend on the

propagation direction oa. Two of these directions are of interest, the first one corresponds

to propagation directions along the free stream at infinity, that is a.=0o or =t and the

second one to a propagation along the axial direction, that is a=--O. 'Ihe consequences of
these choices are connected to the values of the perturbations to the acoustic waves, as
described by the third and fourth characteristics (1.20) and (1.21). In function of the
cartesian components u', v' of the velocity disturbances, we have

w= -P- + u' cos a + v' sinct (3.15a)
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W4 = P - -CoU S-V'sin (3.15b)

and in the first case the velocity disturbances are equal to q', the disturbance of the
velocity amplitude, while in the second case, the velocity perturbations are restricted to the
axial component.

We will consider in the following the first choice, that is o=O, or ='r, observing that

I+1i13 1- itf3
2=- ? 3 _ . (3.16)

the eigenvectors (3.14) become,

.13 13
'2

U = U(2)= -M U (3)= M (3.17)

1 
10

and the general solution is a linear combination of these eigenvectors

0 I
22

U=Cj 0 e-io'x +C2 -1M ei4OTKxe - 3Lx +C 3 - M ei4OTKXeO l Lx (3.18)

11 1

with

K 2 L (3.19)

l a l a

The complex C-coefficients are determined hy matching these solutions with the
numerical soliuloit at the boundary of the computational domain. Denoting by F0 , Go
110 the numerical values of the perturbation wave amplitudes at the boundary, taken as the
line x=O, we define real and imaginary parts of the amplitudes

Ho = h01 -iho 2

Po = Fo + Go = POI -iP 0 2  (3.20)

Qo = Fo- Go = qo1 -iq 0 2
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The coefficients poj and P02 are the Fourier coefficients of the pressure fluctuations,
while q0I and q02 correspond to the expansion of the velocity disturbance q', as can be
seen from equations (3.15) above.

The C- coefficients satisfy the following system,

2 (C 3-C 2 )=H 0

- M (C 2 + C 3 ) = P0  (3.21)

C+C 2 +C 3 =Q 0

Identifying real and imaginary parts and solving for the unknowns leads to the relations
for the real values, marked by a superscript (R).

R)= -h 0 2 POI
b M

R)= hn 2 P01  (3.22a)

MCI = M q0 + pot

and for the imaginary components, marked by a superscript (1),

C(I) ho l+ o2C= -2-"' +
M

2 C )= 2 h °-+ Po_ (3.22b)
23 M

M CI') =- M q0 2 - P 0 2

Referring to equation (3.3), it is seen that the real parts of P0 and Q0 correspond to the
coefficients of the cosine 'cin is in the Fourier expansion, while 1102 is the coefficient of
the sine terms in the expansion of w'2. That is

w2= qO' =,. (h0 t cosoy + h 02 sinoy)

(3.23)
Q 2q' = y3 (qol cosoy + q 02 sin~y)

In order to determine the boundary conditions valid at tile finite distance location of the
boundaries of tile computational domain, corresponding to uniform flow conditions at
infinity, we proceed in the same way as in section 2 and express that the amplitudes of the
incoming characteristic perturbations are zero at infinity, leading to a correction on tile
physical boundary conditions for finite distances, and that the amplitudes of the outgoing
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characteristics are defined by the numerical solution at the boundary. These equations are
now examined separately for an inlet and an exit boundary.

3.1. Inlet boundary conditions

At an inlet section, W'2 and w'3 are incoming characteristics, while w'4 is propagating
from inside the computational domain towards the boundary, for a subsonic inflow, see
figure 3.2.

Referring to the solutions (3.1) this implies that the amplitudes H and F must decay to
zero for x-4--, and consequently that the coefficients C1 and C2 have to vanish since
they are associated resp. with a constant or an exponentially growing amplitude.
Introduced in the relations (3.22), these conditions determine the perturbations FO and HO
in function of Go, which in turn is obtained from the internal numerical solution.

The following relations are therefore valid at the inlet boundary, instead of FO = t0 =
0,

C3 = -
2 i- 0 = 

2h02ih ° -C 3 3+iC 1

3 3 (3.24)
Po P01 iP 0 2

-- a -Qo = q o1- iq 02 = M

The first order perturbation solution in the region upstream of the inlet boundary is then
completely defined for each harmonic as (x < 0)

+i

U = (qo1 - iq02 ) - M eiOtKx e +OPLx (3.25)

1

The perturbations of the outgoing characteristic w'4 can be expressed in function of tlhe
disturbances of the magnitude of the velocity q' by applying the above relations (3.24),
leading to

w,, (P -Q)- (1+ M-)Q= (I + M)q' (3.26)
(326

Therefore, expanding the fourth characteristic is equivalent to a Fourier expansion of the
velocity disturbances q'.

The corrected boundary treatment is therefore established as follows, aissuming that the
incoming flow is isentropic:

i) Develop the numerically computed distribution of the perturbations of the velocity
magnitude in the inlet section, in a complete Fourier series

q'= J(Amcos Oy + Bmsin Oy) (3.26)
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In practice, 4 to 5 harmonics are sufficient for the required accuracy.

ii) At a cascade inlet section, it is customary to fix stagnation pressure and temperature,
as well as the inlet flow angle. The present treatment provides a correction to the
uniform inlet angle due to the finite distance of the boundary and is defined by
applying the Am and Bm-coefficients to the following development, applying equation
(3.23),

q O' = 13 (BmCOS Oy - Amsin oY) (3.27)
m

iii) The pressure disturbances at inlet are directly obtained from q' by application of
equation (1.31) for isentropic conditions, that is

p' = - q' p.q, (3.28)

without the necessity of performing a Fourier expansion.

In summary, the numerically computed perturbations of the velocity
magnitude are expanded in a complete Fourier series along the inlet
section. The resulting Fourier coefficients are applied, after multiplication
by 0, to a modified Fourier expansion in (3.27) in order to obtain the
flow angle disturbances along the inlet section.

The corrected flow angles are then applied as new boundary conditions.

2.2. Exit boundary conditions

At an exit section, w'2 and w'3 are outgoing characteristics, while W'4 is an incoming
characteristic for subsonic exit velocities. Consequently, only one physical boundary
condition can be imposed at a subsonic exit, generally the static pressure.

Referring to the solutions (3.1) this implies that the amplitude G must decay to zero for
x-4 o and consequently, from equation (3.1 8), that the coefficient C3 has to vanish since
it is associated with an exponentially growing amplitude. Introduced in the relations
(3.21), this condition determines the perturbation Go in function of F0 and H0, which in
turn are obtained from the internal numerical solution.
The following relations are therefore valid at the exit boundary, for the amplitudes of the
remaining waves, instead of G0 = 0,

C =Qo+ Po

Po 2ill0 (3.29)
C2 = M-1

'The first order perturbation solution in the region downstream of the exit boundary is then

completely defined for each harmonic as (x > 0)
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0

U = (Q0 
+ - -) 0 e-iOtx -M me-OPLx (3.30)

M

11

Note that the coefficient C1 is the amplitude of a sinusoidal wave in x and represents a
non-dccaying contribution, in other words a purely transported quantity. As shown in
section 2, the vorticity disturbances are proportional to C1.

The corrected boundary treatment is therefore established as follows,

i) Develop the numerical distribution of the flow angle perturbations in a Fourier series
in y along the exit section.

q = _0 (AmCOS4y + BmSsiny) (3.31)

With the definitions (3.23) and the relations (3.29) the expansion of the pressure
disturbances is directly obtained from

P=2 P'cosy + P02 sinoy) (3.32)

ii) The corrections to the uniform pressure boundary condition are defined by applying
the Am, Bm coefficients to the following development, leading to the new boundary
condition

p = p, (Bmcos4)y- Amsin ny) (3.33)

In summary, the numerically computed flow angle perturbations are
expanded in a complete Fourier series along the exit section. The
resulting Fourier coefficients are applied, after multiplication by the
appropriate coefficients, to a Fourier expansion in order to obtain the new
pressure boundary condition.

3.3. Applications to cascade flows

The treatment of the far field boundary conditions, described above, is applied to a
cascade with subsonic inlet and outlet conditions. The blade is formed by a suction
surface with a sinusoidal shape, in order to have a smooth variation of slope, and a
rectilinear pressure surface. The shape is identical to the one used in the duct
computations of section 2.

Calculations are performed in the reference domain, shown in figure 3.3a with 91
points in the streamwise direction and compared to results for a restricted domlain of 55
streamwise points, figure 3.3b, where the boundaries have been taken much closer to the
central part of the channel. The blade extends from -0.5 to 0.5 and the long channel
extends from -I to +1; the incidence flow angle is taken equal to 5 degrees.
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Figure 3.4 shows the isoMach number distribution in the central part of the channel,
comparing the results obtained for the extended and restricted domains, the latter with the
corrected boundary treatment. Figure 3.4a is obtained with the standard boundary
conditions on the extended computational region, imposing uniform pressure at exit and 5
degrees flow angle at inlet, but only the central part is shown. Figure 3.4b is obtained
with the standard boundary conditions on the restricted computational region, imposing
the same uniform boundary conditions. When the corrected conditions are introduced.
figure 3.4c, the computations on the restricted domain become very close to the solution
on the extended domain. This can be noticed in particular by the improved symmetry of
the distribution in tile second case. Another effect appears on the exit flow angles which is
-5.5 for the non-corrected short domain and -5. 1 after corrections.

Figure 3.5 shows an enlarged view of the Mach number distribution on the lower
(suction side) boundary comparing the results obtained for the extended and restricted
domains without and with the corrected boundary treatment. The views cover the region
between the leading and trailing edges resp. and the limits of the computational domain.
Figure 3.5a shows the inlet region, while figure 3.5b shows the exit region. The solid
line is the reference computation with the extended region, the dotted line refers to the
short channel and uniform boundary conditions, while the crosses are obtained from the
short channel with the corrected boundary treatment. The improvement is clearly seen,

An other illustration of the validity of the theory can be seen from figure 3.6, where
the Mach number profiles along the inlet and exit station of the short domains are shown
for the same three cases. The improvement is indeed spectacular.

CONCLUSIONS

A method, based on the linearized solutions of the full system of Euler equations has been
developed, for channel and cascade flows, in order to correct the uniform boundary
conditions, strictly valid at infinity, for the finite distance of the limits of the
computational domain. The linearized solutions are obtained by separation of variables
with a Fourier expansion in the coordinate along the inlet and exit stations and an
exponential variation in the axial direction.

The corrections of the boundary conditions are derived on the basis of characteristic
theory, expressing that the incoming characteristic disturbances have to vanish at infinity.
The outgoing characteristic disturbances are obtained from a Fourier expansion of the
numerical solution at the boundaries. The Fourier coefficients obtained from this
expansion are used to generate the non uniform corrections on the physical boundary
conditions such as flow angle or pressure.

Computations on duct and cascade flows show the correctness and accuracy of the
method, for isentropic and non-isentropic conditions, allowing a considerable reduction
of the size of the computational domain.

Some further work should be done to extend the approach to cases where shocks cross
the boundaries, in order to cover most of the cases occurring in practice.
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